Finite Time Extinction for Nonlinear Schrödinger Equation in 1d and 2d
نویسندگان
چکیده
We consider a nonlinear Schrödinger equation with power nonlinearity, either on a compact manifold without boundary, or on the whole space in the presence of harmonic confinement, in space dimension one and two. Up to introducing an extra superlinear damping to prevent finite time blow up, we show that the presence of a sublinear damping always leads to finite time extinction of the solution in 1D, and that the same phenomenon is present in the case of small mass initial data in 2D.
منابع مشابه
Hybrid differential transform-finite difference solution of 2D transient nonlinear annular fin equation
In the present paper, hybrid differential transform and finite difference method (HDTFD) is applied to solve 2D transient nonlinear straight annular fin equation. For the case of linear heat transfer the results are verified with analytical solution. The effect of different parameters on fin temperature distribution is investigated. Effect of time interval of differential transform on the stabi...
متن کاملMass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1d
We consider the L-critical quintic focusing nonlinear Schrödinger equation (NLS) on R. It is well known that H solutions of the aforementioned equation blow-up in finite time. In higher dimensions, for H spherically symmetric blow-up solutions of the L-critical focusing NLS, there is a minimal amount of concentration of the L-norm (the mass of the ground state) at the origin. In this paper we p...
متن کاملBand Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method
We report the simulation results for impact of nonlinear Kerr effect on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The numerical simulation was performed using...
متن کاملEffective One Particle Quantum Dynamics of Electrons: a Numerical Study of the Schrödinger-poisson-xα Model∗
The Schrödinger-Poisson-Xα (S-P-Xα) model is a “local one particle approximation” of the time dependent Hartree-Fock equations. It describes the time evolution of electrons in a quantum model respecting the Pauli principle in an approximate fashion which yields an effective potential that is the difference of the nonlocal Coulomb potential and the third root of the local density. We sketch the ...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014